skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Kolozsvary, Charles"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. This study addresses COVID-19 testing as a nonlinear sampling problem, aiming to uncover the dependence of the true infection count in the population on COVID-19 testing metrics such as testing volume and positivity rates. Employing an artificial neural network, we explore the relationship among daily confirmed case counts, testing data, population statistics, and the actual daily case count. The trained artificial neural network undergoes testing in in-sample, out-of-sample, and several hypothetical scenarios. A substantial focus of this paper lies in the estimation of the daily true case count, which serves as the output set of our training process. To achieve this, we implement a regularized backcasting technique that utilizes death counts and the infection fatality ratio (IFR), as the death statistics and serological surveys (providing the IFR) as more reliable COVID-19 data sources. Addressing the impact of factors such as age distribution, vaccination, and emerging variants on the IFR time series is a pivotal aspect of our analysis. We expect our study to enhance our understanding of the genuine implications of the COVID-19 pandemic, subsequently benefiting mitigation strategies. 
    more » « less